Single-spin magnetometry with multipulse sensing sequences.
نویسندگان
چکیده
We experimentally demonstrate single-spin magnetometry with multipulse sensing sequences. The use of multipulse sequences can greatly increase the sensing time per measurement shot, resulting in enhanced ac magnetic field sensitivity. We theoretically derive and experimentally verify the optimal number of sensing cycles, for which the effects of decoherence and increased sensing time are balanced. We perform these experiments for oscillating magnetic fields with fixed phase as well as for fields with random phase. Finally, by varying the phase and frequency of the ac magnetic field, we measure the full frequency-filtering characteristics of different multipulse schemes and discuss their use in magnetometry applications.
منابع مشابه
Detection and control of individual nuclear spins using a weakly coupled electron spin.
We experimentally isolate, characterize, and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multipulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to addres...
متن کاملComposite-pulse magnetometry with a solid-state quantum sensor.
The sensitivity of quantum magnetometer is challenged by control errors and, especially in the solid state, by their short coherence times. Refocusing techniques can overcome these limitations and improve the sensitivity to periodic fields, but they come at the cost of reduced bandwidth and cannot be applied to sense static or aperiodic fields. Here we experimentally demonstrate that continuous...
متن کاملEfficient route to high-bandwidth nanoscale magnetometry using single spins in diamond
Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ∝ 1/T (Heisenberg scaling) rather than as the inv...
متن کاملSingle-molecule sensing using carbon nanotubes decorated with magnetic clusters.
First-principles and nonequilibrium Green's function techniques are used to investigate magnetism and spin-polarized quantum transport in metallic carbon nanotubes (CNT) decorated with transition metal (Ni(13), Pt(13)) magnetic nanoclusters (NC). For small cluster sizes, the strong CNT-NC interaction induces spin-polarization in the CNT. The adsorption of a benzene molecule is found to drastica...
متن کاملRadio-frequency magnetometry using a single electron spin.
We experimentally demonstrate a simple and robust protocol for the detection of weak radio-frequency magnetic fields using a single electron spin in diamond. Our method relies on spin locking, where the Rabi frequency of the spin is adjusted to match the MHz signal frequency. In a proof-of-principle experiment we detect a 7.5 MHz magnetic probe field of ~40 nT amplitude with <10 kHz spectral re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 106 8 شماره
صفحات -
تاریخ انتشار 2011